Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly.
نویسندگان
چکیده
This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.
منابع مشابه
Surface-Engineered Fire Protective Coatings for Fabrics through Sol-Gel and Layer-by-Layer Methods: An Overview
Fabric flammability is a surface-confined phenomenon: in fact, the fabric surface represents the most critical region, through which the mass and heat transfers, responsible for fueling the flame, are controlled and exchanged with the surroundings. More specifically, the heat the fabric surface is exposed to is transferred to the bulk, from which volatile products of thermal degradation diffuse...
متن کاملPreparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors
In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...
متن کاملIntumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric.
Flame-retardant and self-healing superhydrophobic coatings are fabricated on cotton fabric by a convenient solution-dipping method, which involves the sequential deposition of a trilayer of branched poly(ethylenimine) (bPEI), ammonium polyphosphate (APP), and fluorinated-decyl polyhedral oligomeric silsesquioxane (F-POSS). When directly exposed to flame, such a trilayer coating generates a poro...
متن کاملPREPARATION AND CHARACTERIZATION OF TiO2 Fe2O3 NANOCOMPOSITE BY SOL GEL METHOD
Nanocomposites have improved aspect ratio and better mechanical properties when compared to the composites which had structures less than 100nm They are 1000 times tougher compared to conventional composites. Besides mechanical properties, nanocomposites also have improved electrical conductivity, thermal stability, chemically resistant, flame retardant and low permeability. TiO2 finds its best...
متن کاملEpoxy-based Flame Retardant Nanocomposite Coatings: Comparison Between Functions of Expandable Graphite and Halloysite Nanotubes
Whis work presents a study on the flammability of epoxy coatings containing two types of nano-scale fillers as potential flame retardants: expandable graphite (EG) and halloysite nanotubes (HNTs). Both nanocomposites are prepared by incorporation of the same amount of nanofiller into the epoxy resin for the sake of comparison. Fire retardant nanocomposite coatings are cured through a two-stage ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Materials
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2018